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Quantized Vortex Rings in Superfluid Helium* 
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Evidence is presented to show that charged particles in superfluid helium at low temperatures can be ac
celerated to create freely moving charge-carrying vortex rings in the liquid. The circulation of these vortex 
rings can be determined by measuring their energy and velocity; it is found to be equal to one quantum h/m, 
where h is Planck's constant and m is the mass of a helium atom. The core radius of the vortex is approxi
mately 1 A. The dynamical properties of such a vortex ring moving under the influence of external forces can 
be described by a dispersion relation E oc p1?2 connecting its energy E and momentum p; it can also be under
stood in detail in terms of the hydrodynamic Magnus force. Experiments are described which verify the 
essential validity of this dynamical analysis. Vortex rings can interact with various quasiparticles in the 
liquid, i.e., with rotons, phonons, and He3 impurities. The scattering of these quasiparticles by vortex rings 
can be investigated by experiments designed to study the temperature dependence of the rate of energy loss 
of such rings moving through the liquid. In this way it is possible to measure the effective momentum-transfer 
cross sections for scattering of the various quasiparticles by vortex lines. The cross section thus deduced is 
9.5 A for scattering of rotons and 18.3 A for scattering of He3 atoms. The experiments yield only scant in
formation about scattering of phonons, but are not inconsistent with the magnitude of the phonon scattering 
cross section expected on theoretical grounds. 

1. INTRODUCTION 

IN earlier work1,2 ions were used as microscopic probe 
particles to study the superfluid state of liquid He4. 

At temperatures sufficiently below the X point the 
liquid can be described in terms of a superfluid ground 
state and collective excitations (or quasiparticles) of 
two different types, namely phonons (low momentum 
excitations) and rotons (high momentum excitations).3 

An ion in the liquid attains thermal equilibrium by 
collisions with these quasiparticles. In the presence of 
a sufficiently small electric field 8, the energy eSl gained 
by an ion in a mean free path / between collisions is 
much less than its thermal energy kT so that the ion 
remains essentially in thermal equilibrium. In this case 
the ion acquires a drift velocity VD proportional to S. 
The corresponding mobility n~vD/8 was measured in 
previous work1-2 and found to increase exponentially 
(for 2">0.6°K) when the temperature was lowered. 
These results show that the mean free path / of an ion 
becomes quite large when the number of thermally 
excited quasiparticles is reduced. (The estimated 
magnitude of / is of the order of a micron at 0.5°K). 
Measurements of this type permitted a detailed 
investigation of the scattering of an ion by the various 
excitations of the liquid. 

The present work describes investigations in the 
opposite limit of low temperatures (0 .28°<r<0 .7°K) 
and in the presence of an electric field high enough so 
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Hill Book Company, Inc., New York, 1962), Chap. 5. 

that e8ly>kT. An ion can then acquire sufficient energy 
between collisions to create excitations in the liquid. 
Indeed, we have already reported in a previous note4 

(which will henceforth be designated as I) that it is in 
this way possible to produce in the superfluid charge-
carrying quantized vortex rings. The following pages 
will be devoted to an extensive discussion of investiga
tions dealing with such vortex rings. 

In this context it is useful to recall that phonons and 
rotons are not the only excitations possible in liquid 
helium. There exist in addition macroscopic excitations 
involving the flow of large amounts of liquid and hence 
characterized by considerably higher energy. Suppose 
that the superfluid at absolute zero is characterized by 
a stationary rotational flow pattern with flow velocity 
vs. In a quantum-mechanical description of the super-
fluid, this flow pattern can be described by a single 
well-defined wave function ^ extending over macro
scopic spatial dimensions. One expects this wave func
tion to have the form ^ = ei<p<&o, where ^o is the ground-
state wave function of the fluid at rest and where <p is 
a phase factor whose gradient is related to the flow 
velocity vs.

5 The condition that ^ be single-valued leads 
then to the requirement that <p change by an integral 
multiple of 2T in going around any closed path. This 
requirement is equivalent to the Bohr-Sommerfeld 
condition in the form 

(D P'dl = m (p \s-dl=hN, (1) 

where p is the momentum associated with a helium atom 
of mass m moving with the flow velocity vs, h is Planck's 

4 G. W. Rayfield and F. Reif, Phys. Rev. Letters 11, 305 (1963). 
6 R. P. Feynman in C. J. Gorter, Progress in Low Temperature 

Physics (Interscience Publishers, Inc., New York, 1955), Vol. 1, 
pp. 34-53. 
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constant, and N is any integer. The application of 
quantum mechanics to superfluid helium thus leads to 
the expectation of quantization on a macroscopic scale,6 

the " circulation" K denned by 

K= (hYs'dl (2) 

being not only constant as it would be classically, but 
quantized in units of 

KQ= h/<m=0.997-10~3 cm2 sec-1. (3) 

The simplest situation is one of cylindrical symmetry. 
In this case (2) becomes K=vs(2irr), where r denotes 
the distance from the symmetry axis and vs the circum
ferential component of vs. Thus 

Vs^K/27Tf, (4 ) 

a relation characterizing the flow pattern of a vortex 
line. [[Note, however, that if r becomes less than some 
cutoff parameter a which is called the "core radius," 
v8 must deviate from the relation (4) since it would 
otherwise become infinite.7] More generally, vortex 
lines need not be straight. They can be curved and, if 
they do not terminate on walls, must close on them
selves ; in particular they can thus form circular vortex 
rings. But the fundamental quantization condition 
remains valid. 

The existence of quantization on a macroscopic scale 
is also predicted in the case of superconductors. In that 
case the momentum p of an electron pair involves the 
vector potential so that the condition (1) leads to the 
quantization of the magnetic flux (or more precisely, 
the fluxoid) passing through a hollow superconductor. 
This quantization has recently been confirmed in a set 
of beautiful experiments.8 The experimental situation 
in the case of superfluid liquid helium has been less 
satisfactory. The only experiment designed to investi
gate directly the question of macroscopic quantization 
has been an ingenious arrangement by Vinen9 in which 
he attempted to measure the force acting on (and hence 
the circulation surrounding) a thin wire stretched along 
the axis of a rotating bucket of superfluid helium. 
Experimental difficulties were, however, encountered 
in establishing equilibrium conditions and in avoiding 

6 L. Onsager, Nuovo Cimento 6, Suppl. 2, 249 (1949); also 
R. P. Feynman, Ref. 5. 

7 It is worth pointing out the electromagnetic analogy to a wire 
of radius a carrying a current / . For an incompressible fluid 
div v = 0 and the vorticity w^curl v = 0 outside the core of the 
vortex line. For the wire, the magnetic field H satisfies the Maxwell 
equations div H = 0 and curl H = j , where j is the current density 
which vanishes outside the wire. Hence the field H surrounding 
the wire is analogous to the velocity v about the vortex; and the 
current I^jfH-dl given by Ampere's law is analogous to the 
circulation of K of (1). 

8 B. S. Deaver and W. M. Fairbank, Phys. Rev. Letters 7, 43 
(1961); R. Doll and M. Nabauer, ibid. 7, 51 (1961); W. A. Little 
and R. D. Parks, ibid. 9, 9 (1962). 

9 W. F. Vinen, Proc. Roy. Soc. (London) A260, 218 (1961). 

partial attachment of vortex lines to the wire. The 
measurements led, therefore, to a wide spread in the 
observed values of /c, although a pronounced maximum 
was found near the value h/m. 

2. EVIDENCE FOR THE CREATION OF QUANTIZED 
VORTEX RINGS 

A. Experiments and Interpretation 

In the present experiments a container enclosing the 
liquid He4 under investigation and several electrodes 
could be cooled down to 0.28°K in an apparatus similar 
to the one described by Reif and Meyer.10 The apparatus 
differed predominantly by using a nonrecirculating He3 

refrigerator and a germanium resistance thermometer. 
Ions were produced in the liquid by a particles from a 
Po210 source immersed in it; ions of either sign could 
then be drawn out of the source region by appropriate 
electric fields. The charges arriving at a collecting 
electrode gave rise to currents (of the order of 10~13 A) 
which could be measured by a Cary vibrating-reed 
electrometer. Gold-plated grids were used in several 
different arrangements to control the electric fields 
between the source and collector (separated by about 
2 cm).11 

The behavior of the charge carriers at some inter
mediate temperature (like 0.6°K) is very different 
depending on the strength of the electric field S. If 8 is 
sufficiently small so that eSK^kT (e.g., less than about 
1 V/cm), one measures a drift velocity and associated 
mobility characteristic of charge carriers subject to 
large frictional effects due to collisions with excitations. 
On the other hand, if & is increased sufficiently so that 
e&iy>~kT (e.g., £>30 V/cm at 0.6°K), the charge 
carriers behave like free particles exhibiting inertial 
properties and subject to relatively small friction. The 
situation is particularly striking at low temperatures 
where a very small field is sufficient to satisfy the 
condition e8£2>kT. All the experiments described in 
this section and the following one were carried out at 
the low temperature of 0.28°K. It is then found that 
the charge carriers can traverse field-free regions several 
centimeters in length with negligible loss of energy. 
They can also move against a retarding field as long as 
the retarding potential does not exceed the total energy 
initially imparted to them by the applied electric fields 
in preceding regions of space.4 In short, the behavior of 
a charge carrier can then be simply described (like that 
of a charged particle in vacuum) by assigning to it a 
well-defined energy and neglecting frictional effects. 

A time-of-flight velocity spectrometer of the type 
shown in Fig. 1 (a) was used to measure the velocity v 
of these charge carriers as a function of their energy E. 
If a potential V is applied between the radioactive 

10 F. Reif and L. Meyer,, Phys. Rev. 119, 1164 (1960). 
11 A more detailed description of the apparatus and the experi, 

mental procedures can be found in Appendix III of G. W. Rayneld-
thesis, University of California, 1964 (unpublished). 
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FIG. 1. The time-of-flight velocity spectrometer. The field 8^ is 
reversed v times per second by applying a square-wave potential 
to grids B. A single-stage spectrometer is shown in (a), a double-
stage spectrometer in (b). 

source 5 and grid Ai, a charge carrier (assumed to be 
singly charged) arrives at A i with an energy E= eV and 
with some velocity v; it is prevented from reaching the 
collecting electrode C by a retarding potential ( « — V) 
applied between A 2 and C A small square-wave poten
tial of frequency v is applied to grid Bi and produces 
in the region A1A1 (free of dc fields) small electric 
fields <§' alternately directed toward and away from B±. 
If v is such that the time of flight L/v of the charge 
carrier through the distance L from Ai to Bi (and thus 
also from Bi to A 2) is just equal to the time (2v)~l 

between field reversals, then the carrier remains in 
synchronism with this field and thus gains from it a 
small net amount of energy sufficient to overcome the 
retarding potential between A<£ and to reach the 
collector C. The current / arriving at C exhibits thus a 
resonance maximum at the frequency v=%(v/L) (and 
at odd harmonics thereof).12 A measurement of this 
frequency yields then directly the velocity v of the 
charge carrier. It is possible to increase the resolution 
of the method by using two stages of velocity selection 
in succession, as illustrated in Fig. 1 (b) where a square-
wave potential of the same frequency v is applied to 
both grids Bi and B%. 

Velocity measurements were thus carried out under 
varying conditions and with various grid spacings in 
velocity spectrometers containing either one or two 
successive stages of velocity selection. The results ob
tained were reproducible and consistent, but revealed 
the following two remarkable facts, (a) The measured 
velocities are very small (e.g., A =27 cm/sec when 
E=10 eV), roughly smaller by a factor 105 than the 
calculated velocity in vacuum of a He4 ion of comparable 
energy, (b) More striking still, the measured velocity 
of a charge carrier is found to decrease when its energy 
is increased (v&E~l approximately). It was verified 
that the relation between v and E is unique, i.e., that 

12 The odd harmonics arise because an odd number of field 
reversals during the time of flight from A\ to Bi also results in a 
small net increment of energy being imparted to the charge 
carrier, 

v depends only on the actual energy E of the charge 
carrier irrespective of its past history describing how 
this energy was attained.4 (Additional details concern
ing the preceding experiments can be found in I.) The 
experimental data showing the observed dependence 
of v on E are summarized in Fig. 2. 

The low value of the measured velocity suggests that 
the charge is strongly coupled to veiy large amounts of 
the surrounding liquid so that one observes effectively 
the motion of a well-defined localized disturbance of 
the fluid, a disturbance which is essentially macroscopic 
but labeled by an attached charge. A natural assump
tion is that this disturbance is a vortex ring which is 
indeed a hydrodynamically stable entity characterized 
by an energy E and velocity v approximately related by 
the proportionality v a E~l (reminiscent of that observed 
for the charge carriers in the present experiments). 
Figure 3 indicates schematically in cross section the 
flow pattern of such a vortex ring of radius R. A straight 
vortex line of circulation K has associated with it a 
kinetic energy of rotation E' per unit length, plere E' 
is proportional to the integral over space of vs

2 given 
by (4), i.e., E' <x K2.] In first approximation the energy E 
of the vortex ring is thus given by E= {2wR)Ef so that 
E oc K2R. In order to estimate the axial velocity v of the 
vortex ring, one can simplify the problem by making 
it two dimensional, i.e., by replacing the ring in Fig. 3 
by a pair of straight vortex lines of opposite circulation 
separated by a distance 2R. The flow pattern of one 
vortex line would not move in space if the other line 
were absent. But, if the second line is present, it 
produces at the center of the first line a velocity which 
is, in accordance with (4), equal to V—K/(4^TR) and 
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FIG. 2. Relation between the velocity v and energy £ of a vortex 
ring. The points are experimental data for positive and negative 
charge carriers. The curve is the theoretical relation following 
from (5) and (6) with K — h/m and a = l , 2 A , 
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FIG. 3. Schematic illus
tration showing a vortex 
ring in cross section. (The 
actual flow velocity va at 
any point is a super
position of the flow veloci
ties indicated in the 
diagram.) 

which causes the whole flow pattern of this line to move 
with this velocity. Similarly, the first line produces at 
the position of the second line a velocity v of the same 
direction and magnitude. The net result is that the 
pair of lines moves under their mutual influence with a 
velocity v « K/R. The axial velocity of the vortex ring 
differs only slightly from this result. Hence it follows 
that a large vortex ring of given circulation K has a large 
energy E, but a small velocity v; or somewhat more 
quantitatively, since E^K2R while V^K/R, the ring 
satisfies the approximate relation v oc KZE~1. The presence 
of an applied force causes then the energy E (and 
corresponding radius R) of a vortex ring to increase, 
but as a result its velocity decreases.13 (The dynamical 
details will be discussed more fully in Sec. 3.) 

The exact expressions derived by classical hydro
dynamics for the energy and velocity of a vortex ring, 
moving in an incompressible fluid of density p and 
having a radius R much greater than its core radius a, 
are14 

and 

where 

E=ipKsi?D,-(7/4)], 

»=(«/4»*)(i , - i ) , 

V=ln(SR/a). 

(5) 

(6) 

(7) 

Since R2>a, the parameter rj is a very insensitive func
tion of R so that the relations (5) and (6) agree to good 
approximation with the previously mentioned propor
tionalities E<XK2R and V^K/R. Note also that (5) and 
(6) depend on a only logarithmically through rj. The 
behavior of the vortex ring is thus quite insensitive to 

13 This can be demonstrated visually quite vividly by experi
ments in which a buoyant vortex ring consisting of a light liquid 
is formed in a heavier liquid. See J. S. Turner, Proc. Roy. Soc. 
(London) A239, 61 (1957). 

14 H. Lamb, Hydrodynamics (Dover Publications, Inc., New 
York, 1945), 6th ed., p. 241. See also L. Prandtl and O. G. Tietjens, 
Fundamentals of Hydro- and Aeromechanics (Dover Publications, 
Inc., New York, 1957), Chap. 12. By virtue of the electromagnetic 
analogy mentioned in footnote 6, the energy E in (5) is analogous 
to the energy %LP associated with the self-inductance L of a 
circular current loop. 

the exact value of a (expected to be of the order of 
atomic dimensions) or to specific models describing the 
behavior of the fluid within this core radius.15 The 
question then arises whether the relation between v 
and E observed for the charge carriers in the present 
experiments satisfies indeed the functional relation 
predicted by (5) and (6). If this is the case, one would 
then like to determine the values of the two unknown 
parameters K and a which appear in these equations. 

The data can be analyzed most conveniently by 
eliminating the radius R between (5) and (6). Multi
plication of (5) by (6) yields the relation 

vE = B[<o-(7/4:)2(v-i), where B=PK*/8TT. (8) 

Since i££>l, (8) gives to good approximation 
17 = (vE/By*2+l. Furthermore, (7) and (5) give 

iy=ln{16£[>ic2a(i?-7/4)]-1}. (9) 

A combination of these results yields then the relation 

(vE)1 ^ ^ j ^ i ^ l InE- l K vE\112 3-1 

j) -;J 
+J31'2 

L n w J J * (10) 

Since vE is, by (8), only-a slowly varying function of JE, 
the logarithmic second term in the curly brackets is in 
first approximation almost a constant. Hence a plot 
of (vE)112 versus InE should, in this approximation, 
yield a straight line of slope B112. In next approximation, 
one can use the approximate value of B thus determined 
in the curly brackets; a plot of (vE)112 versus the expres
sion in curly brackets should thus yield a straight line 
of slope B1'2 (which determines K) and with an intercept 
which determines a. If the experimental data are plotted 
in this way, they do indeed appear to fall on a straight 
line whose slope and intercept yield the values 

K= (1.00±0.03)X10-13 cm2 seer1, (11) 

fl=(1.28±0.13) A, (12) 

with estimated probable errors as indicated.16 Here we 
have used p=0.1454 g cmr3 for the density of liquid 
helium,. 

It is striking that the value of K deduced in (11) from 
15 The relations (5) and (6) are derived assuming that the 

vorticity has a constant value inside the core. If one assumes 
instead that the core is hollow so that the vorticity vanishes there, 
then the formulas (5) and (6) differ by replacing t) by rj — I. [See 
W. M. Hicks, Phil. Trans. Roy. Soc. 175A, 183 and 190 (1884).] 
Since the density of the fluid must decrease when the velocity vs 
becomes sufficiently high, this second model might be slightly 
preferable. But since R2>a and rj^lO in our experiments, the 
distinction between the two models is essentially negligible and is 
physically rather meaningless since the hydrodynamic approxima
tion cannot be extended reliably down to the atomic scale of a. 

16 If one assumes a hollow core, only the intercept of the straight 
line (10) is affected ( - 1 being replaced by —5/4). Hence this 
model gives the same value of K, but a somewhat smaller hollow 
core radius a = (l.OOdbO.10) A. 
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the experimental data is, within the limits of estimated 
error, equal to one quantum /c0 of circulation given by 
(3).17 To make the comparison between theory and 
experiment more explicit, one can assume that the 
charge carriers are vortex rings with a circulation K 
equal to precisely one quantum K0 and can choose for 
the only remaining parameter a [on which (5) and (6) 
depend only insensitively] a value of the order of (12). 
The equations (5) and (6) yield then a unique prediction 
for v and E for various values of R. The resulting 
theoretical curve of v versus E is shown in Fig. 2 
together with the experimentally measured values. The 
agreement between theory and experiment is seen to be 
quite good. In the investigated experimental range 
where E is between 1.5 and 45 eV, the corresponding 
radius R of a vortex ring lies between 5X 10~6 and 10~4 

cm. It is also worth noting that the experimental data 
for both positive and negative charge carriers fall on 
the same curve (despite the fact that the mobility 
measurements in the limit of very low electric fields 
have shown appreciable differences between the mobili
ties of positive and negative ions)2. This is in agreement 
with what one would expect for a vortex ring since E 
and v are then determined by the properties of a large 
amount of fluid, rather than by the particular small 
charge coupled to it. All these results indicate that the 
charge carriers observed in the present experiments are 
indeed quantized charged vortex rings moving in the 
superfluid. 

The core radius a in (12) is, as expected,5 of the order 
of atomic dimensions. From experiments on the velocity 
of vortex waves Hall has inferred that the core radius 
of a free vortex line is approximately 6.8 A, a value of 
the same order of magnitude as that in (12).18 On the 
other hand, Vinen9 in his experiment on quantized 
circulation used equilibrium free energy arguments to 
infer for a an unreasonably large value greater than 
104 A; he was thus led to suggest that the simple picture 
of free vortex lines is inadequate. The present experi
ments, however, do not support this suggestion since 
the simple model of free vortex rings with a ~ l A seems 
to fit our experimentally measured energies and 
velocities very well. 

B. Speculative Remarks 

Before discussing further experiments involving 
quantized vortex rings, it may be useful to interject a 

17 This value is based upon the plausible assumption that the 
charge carriers (arising from the He+ ions and electrons originally 
produced near the source) are singly charged. If they were doubly 
charged, one would expect that some of them would also be singly 
charged; but experimentally the data for all charge carriers, 
including those of opposite sign, fall on the same curve. Further
more, the deduced value of K would then be 21/3K0, which seems 
rather unlikely. 

18 H. E. Hall, Advances in Physics (Francis & Taylor, Ltd., 
London, 1960), Vol. 9, p. 89. I t is possible that the presence of a 
charge (coupled to the vortex ring as described in the following 
paragraphs) may modify somewhat the effective core radius a 
compared to that of an uncharged vortex. 

few speculative comments about the coupling of the 
charge to a vortex ring and about the initial formation 
of the ring. Let us begin by considering the first question 
from a phenomenological point of view, keeping in mind 
the fact that the vortex rings actually observed are 
fairly macroscopic (i£>500A). It is then most likely 
that the singular region in the fluid, i.e., the core of the 
vortex ring, acts as a potential well for the charge. In 
this case the charge, whether it be an ion or electron, is 
characterized by a wave function localized around the 
core. This wave function may, of course, extend somewhat 
beyond the confines of the core proper to a distance 
r>a, and may do so by different amounts for a positive 
or negative charge coupled to the ring. (The binding 
energy of either kind of charge to the core may corre
spondingly also be different, as long as it is sufficiently 
large to keep the charge coupled to the ring. The experi
ments performed up to now give no information about 
such details.) As far as motion along the circumference 
of the core is concerned, the potential well acts like a 
one-dimensional box of length greater than 1000 A. 
Corresponding to this degree of freedom, the spacing of 
the energy levels of the charge is thus much less than kT. 
The charge can, therefore, be regarded as moving 
around the circumference like a classical particle. Even 
if its effective mass is of the order of 100 He-atom 
masses,19 its thermal velocity is large enough so that 
the fractional change in the velocity v of the vortex ring 
is always small during the time required for the charge 
to traverse the circumference. In addition, the motion 
of the charge on the ring is randomly interrupted by 
collisions with thermal excitations, its mean free path 
(estimated from the ion mobility measurements) being 
comparable to the circumference. Hence the charge 
can be regarded as being in effect distributed uniformly 
around the core of the vortex ring. 

Let us next conjecture why the core should act as a 
potential well for the charge. The following model may 
illuminate the essential features of a mechanism. The 
electric field of an ion immersed in liquid helium 
compresses the liquid in its immediate vicinity appreci
ably ; indeed, this electrostriction should be sufficient to 
cause the solidification of the liquid within a radial 
distance of the order of 7 A from the ion.19 Consider 
then a small solid sphere of this kind (which we shall 
call an "ion complex") in the vicinity of a vortex ring. 
The fluid velocity due to the vortex is greatest near the 
core and falls off with increasing distance from the core; 
correspondingly, it follows by Bernoulli's principle that 
the pressure in the fluid is least near the core and 
increases with distance from the core. The net pressure 
force acting on the small solid sphere surrounding the 
ion tends therefore to drive it toward the core. Indeed, 
if the sphere is located in the core, it replaces a corre
sponding volume of fluid rotating with high velocity 
and reduces thereby the kinetic energy associated with 

19 K. R. Atkins, Phys. Rev. 116, 1339 (1959). 
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the vortex ring20; hence, the situation of lower total 
energy is one where the little sphere is located at the 
core rather than elsewhere in the fluid.21 (In the case of 
an electron in liquid helium, the theory has been 
advanced that it surrounds itself by a hollow bubble in 
order to reduce its zero point kinetic energy22; here 
again the vortex core, which tends to be hollow already, 
would form an energetically favorable region for trap
ping the electron.) 

Finally we comment on the initial creation of the 
vortex ring by the original ion complex. Although the 
problem here is somewhat delicate because arguments 
of macroscopic hydrodynamics become questionable 
when applied to vortex rings of atomic size, the process 
is likely to be analogous to that involved in the creation 
of a vortex ring behind a sufficiently rapidly moving 
macroscopic sphere.23 The smallest vortex ring thus 
created must have a radius of the order of a few ang
stroms (the size of the ion-complex sphere). Since the 
vortex ring has one quantum of circulation and is of a 
size not much larger than a roton excitation, the critical 
velocity vc which the ion complex must attain to create 
the vortex ring with conservation of energy and 
momentum should be comparable to that necessary for 
creation of a roton, i.e., z>c»50 m/sec. This velocity is 
of the order of magnitude of that attained by an ion-
complex between collisions with excitations if the 
temperature T and electric field S are such that 
e8l>kT. (Indeed, drift velocities of the order of 
40 m/sec were the highest ones observed by Reif and 
Meyer before their apparatus failed to function because 
of the appearance of frictionless behavior of the charge 
carriers.)24 When the ion complex is initially accelerated, 
it attains first the energy necessary to create a vortex 
ring of one quantum of circulation, gets captured by it, 
and then slows down. It is thus unlikely that the ion 
complex in our experimental situation can attain the 
larger energy necessary to create a vortex ring with 
several quanta of circulation before it creates the 
ring of minimum circulation h/m. 

3. GENERAL DYNAMICAL PROPERTIES 
OF CHARGED VORTEX RINGS 

A. Dispersion Relation 

This section will be devoted to an investigation of the 
three-dimensional motion of charged vortex rings under 

20 yery crudely, by an amount of the order of 10~3 eV. 
21 We are indebted to Professor R. P. Feynman for discussing 

with us his thoughts on the subject and thereby helping to confirm 
our own speculative conclusions about the location of the charge 
on the ring. 

22 C. G. Kuper, Phys. Rev. 122, 1007 (1961). 
23 See, for example, the lovely flow photographs of vortex 

formation in L. Prandtl and O. G. Tietjens, Applied Hydro- and 
Aeromechanics (Dover Publications, Inc., New York, 1957), 
p. 279. It should, however, be remembered that these photographs, 
although suggestive, are made by using a real fluid which exhibits 
viscous effects in the boundary layer. 

24 See Ref. 2; also Liquid Helium, edited by G. Careri (Academic 
Press Inc., New York, 1963), International School of Physics, 
Enrico Fermi, course 21, pp. 422 and 424. 

the influence of external forces of arbitrary direction. 
Such studies provide not only further evidence that the 
observed charge carriers are vortex rings, but show also 
how the general dynamical behavior of such rings can 
be understood in detail. 

The previous experiments have dealt only with the 
motion of vortex rings in one dimension. To good 
approximation the situation can then be described in 
the following simple terms. A vortex ring has associated 
with it a certain energy E given by (5) and a 
"momentum"25 

p=TpKR2n, (13) 

pointing along its axis in the direction (specified by the 
unit vector n) of the flow velocity vs at the center of 
the ring. Equation (6) is then, to good approximation, 
consistent with the general result 

Y=dE/dp, (14) 

relating the group velocity of any excitation to the 
gradient of its energy with respect to its momentum. 
(In our one-dimensional experiments p and v are always 
oriented along the direction n of the applied electric 
fields.) Furthermore, since 77 is a very insensitive func
tion of R(or E), it can be regarded as nearly constant 
if the energy E does not vary over too large a range. In 
that case (5) and (13) imply the approximate udisper-
sion relation" 

E^Ap1'2, (15) 

where p= | p| and where A is a constant. This is to be 
contrasted with the dispersion relation E<*p2 for an 
ordinary particle. Equation (15) implies that *>=|v| 
given by (14) decreases as p mcreases; indeed, 
v = ±Ap-1l2 = ±A2E-1 so that vccEr1. 

These considerations suggest that it should be 
possible to describe the general three-dimensional 
motion of a vortex ring in terms of a dispersion relation 
E = E(p) relating its energy E to the magnitude p of 
its momentum by the Eqs. (5) and (13) [i.e., approxi
mately by (15)]. The dynamics of a vortex ring should 
then be completely described in terms of the equation 
of motion p = F (where p = J p / ^ and F is the external 
applied force) and the relation (14) connecting v and p. 

To check the validity of this general point of view 
and to provide further evidence that the unusual 
behavior of our charge carriers can be described in a 
consistent fashion, we designed the simple transverse 
deflection experiment illustrated in Fig. 4. This arrange
ment is similar to a cathode-ray oscilloscope. Charge 
carriers are given an energy E0= eVo by passing through 
an initial potential difference Vo applied between the 
source S and the first grid A. The three slits (1 mm 
X6 mm) in A, Aiy and A2 serve to produce a well-

25 More precisely this is the "impulse." The distinction can be 
found elaborated by C. C. Lin in Liquid Helium, edited by G. 
Careri (Academic Press Inc., New York, 1963), International 
School of Physics, Enrico Fermi, course 21, pp. 98-103. 
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collimated charge-carrier beam of rectangular cross 
section. The beam passes then between a pair of 
deflecting plates of length Lz separated by a distance Lx. 
A potential Vx applied between these plates produces a 
small transverse electric field 5 , ; a s a result the beam 
is deflected through a net angle 6. Most conveniently 
one can measure the change in Vx required to deflect 
the beam through the particular angle which makes it 
pass first through one, and then through the other, of 
two slits in a mask M in front of the collector C. The 
experiment consists then of observing the current / at 
the collector C as a function of Vx for a given initial 
potential VQ. 

Since the deflection angle 6 is small, the experiment 
can be analyzed by a simple impulse approximation. A 
charge carrier arrives at the deflecting plates with an 
energy E= eVo; it has then a momentum po and a corre
sponding velocity VQ in the z direction. As a result of 
passing between the deflecting plates, it acquires a 
small net momentum Apx in the x direction. Its final 
momentum p (and corresponding velocity v) makes 
then an angle 6=Apx/po with respect to the z axis. 
(This means tha t the plane of the ring is tilted by this 
angle.) Let us first neglect edge effects by assuming 
that the field Sx has a constant value between the 
deflecting plates and falls abruptly to zero outside this 
region. Since Apx<£.po, the charge carrier spends then 
to good approximation a time LZ/VQ between the plates 
and acquires as a result a transverse momentum 
Apx=(eSx)(L2/vo).Thus 

Apx eSx(Lz/vQ) eVx Lz 
6= = = , (16) 

po po poVo Lx 

since Sx= Vx/Lx. If edge effects are taken into account, 
the momentum gain Apx calculated above should be 
multiplied by some geometrical correction factor g. 
Furthermore, (14) permits one to write quite generally 
for any excitation 

pv = p(dE/dp) = yE (y=dlnE/dlnp). (17) 

Hence, one obtains the general result 

where we have put EQ= eVo. 
If the charge carrier is an ordinary particle, then 

Eccp2 so that the parameter y defined in (17) assumes 
the value y= 2. On the other hand, if it is a vortex ring, 
the relation E oc p1!2 of (15) gives 7 = J . To good approxi
mation the result (18) applied to vortex rings gives then 

7 = | and 0„ = 40o, (19) 

where dv is the observed deflection angle of the vortex 
ring and 60 is the deflection angle which would be 
observed for ordinary particles under identical 
conditions. 

L. 

1 — 

5 t 

T 

K A , 

i i 

J ^ --"^ \e 

A 2 ! 

U c 

FIG. 4. Schematic diagram of the deflection apparatus. The 
deflection angle Q — \DXIDZ~0.208 rad. Other actual dimensions 
are Lx=0.3 cm, Z2=0.5 cm, and Dz=1.25 cm. 

The correction factor g for edge effects can, actually, 
be calculated very readily. Consider the most general 
case of arbitrary spatial variation of the field §x due 
to the deflection plates. Since it requires a time dt=dz/vo 
for the charge carrier to undergo a displacement with 
component dz in the z direction, the total transverse 
momentum acquired by the carrier is given by 

r e r 0 

Apx= / e8xdt=— I SJz. (20) 

But, by Gauss's theorem, the last integral must be 
equal to \KQ'^\KC'V x where Qf is the charge per unit 
length on one of the deflection plates (considered of 
infinite extension in the y direction) and where C is 
the actual capacity per unit length of the pair of 
deflection plates. Thus one obtains 

Apx ±iceC'Vx 4TVX 

0 = — = = C". (21) 
po poVo 7 VQ 

But C' = gCo, where CO=LZ/(ATTLX) is the ideal capaci
tance per unit length in the absence of edge effects and 
where g is a correction factor whose calculation is a 
standard problem in electrostatics. [A Schwartz-
ChristofTel transformation gives in first approximation 
g = l + J r - i ( l + l n J ) where b=7rLz/LxJ* 

The actual experiment was carried out in the appa
ratus of dimensions indicated in Fig. 4. For any initial 
potential Vo one could measure the potential Vx re
quired to produce the fixed deflection angle 6. The 
experiment was carried out with both positive and 
negative charge carriers of several energies correspond
ing to initial voltages of magnitude | Vo \ between 5 and 
45 V. As expected from (18), the ratio Vx/Vo was found 
to be essentially constant (VX/V0=0M6±0.002). The 
value of the geometrical correction factor g calculated 
for the deflection plates alone was 1.59. To get an 

26 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 2, 
p. 1246. A more accurate result is quoted in A. H. Scott and H. L. 
Curtis, J. Res. Natl. Bur. Std. 22, 754 (1939). 
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improved value taking into account the presence of 
other electrodes like A 2, the electrode structure was 
drawn to scale with silver paint on resistance paper; 
this modified "electrolytic tank" analog technique 
permitted measurement of the electric field at all points 
and consequent numerical evaluation of the integral 
in (20). The best estimate thus obtained for g was 
g=1.39±5%. Agreement with the theoretical expres
sion (18) requires then that 7=0.51 ±0.04. This result 
is completely incompatible with the value 7=2 for an 
ordinary particle, but is in good agreement with the 
value 7 = | deduced in (19) for vortex rings.27 The 
deflection experiment provides, therefore, additional 
evidence that the general dynamical behavior of the 
charge carriers can be consistently described in terms 
of the dispersion relation characteristic of vortex rings. 

B. Magnus Forces 

It is instructive to show how the dynamical behavior 
of charged vortex rings can be understood from a more 
detailed hydrodynamical point of view which provides 
appreciably greater physical insight. Our analysis will 
involve the hydrodynamic lift (or "Magnus") force.28 

Although the application of this result to the nonsteady 
motion of curved vortex filaments has not been rigor
ously established in classical hydrodynamics, it de
scribes the observations quite well and justifies explicitly 
our previous description in terms of a dispersion 
relation. 

The core of a charged vortex ring may be regarded as 
a charged thin solid ring of negligible mass; by Newton's 
second law of motion the net force on this body must 
then always vanish. But this force consists of two parts: 
(1) the applied force F due to external fields and (2) the 
hydrodynamic Magnus force. Thus the core must 
always move so that F + G = 0 or 

G = - F , (22) 

where the Magnus force G' per unit length will quite 
generally be assumed to be given by 28 

G ' = P K X U . (23) 

Here p is the density of the fluid, K is the circulation 
vector of the element of core length under consideration 
(the direction of K being such that the fluid in the 
vicinity of the element flows in a counterclockwise sense 
about this direction), and U is the relative velocity of 
this element with respect to the fluid. Thus U=u—u/, 
if u is the velocity of the core element and if U/ denotes 

27 A more accurate evaluation oip(dE/dp) in (17) yields, by (5) 
and (13), 7 = i { l + & - ( 7 / 4 ) ] - 1 } « 0 . 5 6 since r;«10. The deflec
tion experiment is not accurate enough to discriminate between 
this result and the simpler value 7 = J . 

28 For a derivation of this hydrodynamic result see, for example, 
K. Oswatitsch, Handbuch der Physik, edited by S. Flugge 
(Springer-Verlag, Berlin, 1959), Vol. 8/1, p. 84. See also L. M. 
Milne-Thomson, Theoretical Hydrodynamics (Macmillan, Ltd., 
London, 1938), pp. 237-243, in particular the theorem of Blasius. 

the fluid velocity at this position caused by all sources 
other than this core element itself. Note that the 
relations (22) and (23) imply that a straight charged 
vortex line in the presence of an external force must 
always move so that U is perpendicular to this force. 

In applying the relations (22) and (23) to a vortex 
ring, we shall assume that its core is constrained to 
remain always circular in shape.29 As a result of external 
forces changes can, however, be produced not only in 
the velocity v of the center of this ring, but also in its 
radius R and in its axial direction n which specifies the 
orientation of the plane of the ring. By direct calculation 
it can be shown that the fluid velocity uf at any core 
element due to the rest of the circular vortex ring is 
equal to ^n where v is essentially given by (6). In 
considering the effect of an applied force "F=e8 at any 
instant of time, one can resolve it into a component 
parallel to the axial direction n (which we shall choose 
as the z direction) and into a component (chosen to be 
in the x direction) parallel to the plane of the ring. We 
shall consider the effects of these components in turn. 

When the applied force F is in the axial (or z) direc
tion, the Magnus force must, by (22), point in the 
opposite direction. Hence the relative velocity U must 
point along the outward radial direction of the ring 
see Fig. 5. The core velocity becomes then u = v + U 
where \=vz is axial and the radial component \J=R& 
tends to increase the radius of the ring in the course of 
time. The total Magnus force on the core is by (27) 
equal to GZ=—PKR(2TTR). Hence, (22) requires that 
the radial velocity R be 

2TTPKRR = (d/dt) (TTPKR2) = Fz. (24) 

Since v is by (6) a decreasing function of R, the axial 
velocity ue=v of the ring decreases in time according 
to duz/dt= (dv/dR)R. Using (13) as a1; definition of the 
momentum p, the relation (24) is equivalent to pz=Fz. 
Furthermore, the energy gain of the ring in time dt is 
equal to the work done on it by the applied force, i.e., 

V 

UA -J* 

FIG. 5. Cross-sectional ! 
view of a vortex ring in the ! 
presence of an applied axial i 
force F' per unit length. ; 
(The symbols o and <S> in- . | 
dicate that the circulation } 
vector K points out of, or in- ! 
to the paper, respectively.) Q> \K p 

29 We shall thus neglect vibrations of the ring or any effects due 
to a possible nonuniform distribution of charge along the core of 
the ring when it is in the presence of an electric field parallel to 
its plane. 
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Side view Front view 

FIG. 6. Cross-sectional and frontal views of a vortex ring in the 
presence of a force F ' per unit length applied in the % direction 
parallel to the plane of the ring. (The symbols O and 0 indicate 
vectors pointing out of, or into, the paper, respectively.) 

dE=Fzuidt=p& fadi) = dpev& which is consistent with the 
relation (14). 

When the applied force is in the x direction parallel 
to the plane of the ring, the Magnus force on each 
element of the core must have a component in the — x 
direction. The cross-section diagram of Fig. 6 shows 
then immediately that the relative velocities U of core 
elements on opposite sides of the ring must be equal 
but of opposite sign. As a result, the plane of the ring 
must thus rotate about the y axis. More precisely, the 
relative velocity U can have no radial component since 
this would lead to a Magnus force in the z direction in 
which there is no applied force. Hence the radius of the 
ring, and hence its energy, remains constant. Rotation 
of the plane of the ring about the y axis with angular 
velocity 6 produces, however, a relative core velocity 
\]= — (R cos (p)dz at a ring element of length (Rd<p) 
making an angle <p with the x axis. The Magnus force 
on this element is then — picR cos (pd(Rd<p) in the J$ 
direction. If this is multiplied by cos <p and integrated 
over all angles 0<<p<2w, one obtains the total x com
ponent of the Magnus force on the ring. By virtue of 
(22), one obtains then the following relation for 6: 

Gx^-TPKR2d=-Fx. (25) 

Using the definition (13) of the momentum p, (25) is 
equivalent to \p\d=Fx or to px=Fx since Px=|p|0 
when R is unchanged and the vector p simply rotates. 
Thus the situation is again consistent with our previous 
description in terms of a dispersion relation. 

4. INTERACTION OF VORTEX RINGS WITH 
QUASIPARTICLES 

A. Energy Loss Measurements 

We already pointed out that at sufficiently low tem
peratures (say 0.28°K) a vortex ring subject to no 
external forces can traverse an appreciable distance 
with negligible loss of energy. At higher temperatures 
the energy loss does, however, become increasingly 
pronounced; e.g., at 0.65°K, it may amount to as much 

as 15 eV/cm. This energy loss can be attributed to the 
interaction of the vortex ring with the various quasi-
particles in the liquid. These quasiparticles are expected 
to be phonons or residual He3 impurities at low tem
peratures, but at higher temperatures they are pre
dominantly rotons since the number of these increases 
exponentially. A systematic investigation of the energy 
losses of vortex rings at several temperatures should, 
therefore, allow one to study these scattering processes 
in detail and to deduce explicit values for the cross 
sections describing the scattering of these various 
quasiparticles by vortex lines. 

The quantity of experimental interest is the effective 
frictional force $ acting on a vortex ring because of the 
scattering of such quasiparticles. In the present context 
we shall again deal with the simple case where the 
vortex ring is moving in one dimension, say in the z 
direction. The force # acts then in the —z direction and 
is related to the vortex ring energy loss per unit distance 
traveled by the ring, i.e., #= { — dE/dz). This frictional 
force is, of course, some function of the temperature T 
and of the energy E of the ring. It is, however, readily 
possible to infer the functional form of $ on the basis 
of a very general argument. Suppose that a long 
straight vortex line moves with velocity v relative to the 
quasiparticles of the fluid (the velocity v being very 
small compared to the mean speed of the quasiparticles). 
The frictional force #' per unit length of the line must 
vanish when v = 0. If #' is expanded in a power series 
in v, the leading term of appreciable magnitude is then 
proportional to v; i.e., 9:/ oc v. [Since the mean free paths 
of all quasiparticles are known to be large, greater than 
10-4 cm at the temperatures below 0.7°K of our experi
ments,30 the force can be calculated by using kinetic 
theory to analyze individual scattering processes of 
quasiparticles with a vortex line (see Appendix II).] 
But the radius R of a vortex ring is large (R>500 A in 
the present experiments) compared to the distance over 
which a vortex line interacts appreciably with a quasi-
particle and also large compared to the wavelength X 
of a quasiparticle.31 Hence the frictional force on a 
vortex ring must be the same as that on a vortex line 
bent into a circle of radius R, i.e., $= (2irR)$f <*Rv. 
The expression (6) for v shows then that ^ is almost 
independent of the radius R, or energy E, of the ring. 
More precisely, # can be written in the form 

$=-dE/dz=a(T)x(E) ( w - 1 ) . (26) 

Here x depends on E only logarithmically by virtue 
of (9), while a is some coefficient which, for a ring of 
given circulation, can only depend on T. The relation 
(26) separates explicitly the dependence of $ on energy 
and temperature. Since (5) and (7) permit calculation 

30 K. R. Atkins, Liquid Helium (Cambridge University Press, 
New York, 1959), p. 109. 

31 This is certainly true for rotons (X«lA) and He3 atoms; it 
is also approximately true for most vortex rings in the case of 
phonons where X<400 A at 0.3°K. 
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of E and 77 for various values of R, the dependence of 
x(E) on E can be calculated explicitly (e.g., when 
R= 5000 A, E= 19.5 eV and X= 10.1). 

Two methods were used to measure the frictional 
force 5\ The first of these (which we shall call the 
"constant-velocity method") is based upon the com
pensation of the frictional losses by a known applied 
electric field. The basic apparatus is the two-stage 
velocity spectrometer of Fig. 1(b) where the velocity 
can be measured either in the region Ti or the region T2. 
In the absence of any applied dc electric fields, a vortex 
ring loses energy in traversing the spectrometer so that 
its measured velocity is greater in the region T2 than 
in the region Ti. I t is, however, possible to apply a 
constant uniform electric field & throughout both r x 

and r 2 , and to adjust § until the measured velocity is 
the same in both Ti and T2. Under these circumstances 
the vortex ring does not lose any energy in traversing 
the apparatus and the applied force just balances the 
frictional force so that $=e£. The energy of the ring 
can be computed from its measured velocity if it is 
assumed that the relation between v and E determined 
in Sec. 2 of this paper is a characteristic temperature-
independent property of vortex rings. (This energy E 
is somewhat less than that given by the initial potential 
between C and grid A1, but the difference is consistent 
with the energy loss caused by the measured friction 
force 3\) 

Figure 7 shows experimental values of ^ measured 
by this method at a given temperature r=0 .615°K for 
vortex rings of various energies. I t is seen that the data 
are indeed consistent with the very insensitive energy 
dependence expected from (26). A plot of SF versus x(E) 
gives the value ofa(T) at the given temperature of the 
experiment (e.g., a=1 .04 eV/cm at r=0 .615°K) . The 
solid circles in Fig. 9 show values of a obtained at 
several temperatures by this method. Small values of 
a cannot be measured accurately because of the diffi
culty of resolving small changes in velocity between 
the regions Ti and T2. (The small energy loss becomes 
then comparable to the energy gained from the alter
nating electric square-wave field.) 

The second method of measuring # (the " stopping-
potential method") attempts to determine the energy 
loss suffered by a vortex ring in traversing a long 
field-free region and is more accurate at low tempera-
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FIG. 8. Schematic diagram illus
trating the stopping-potential 
method of measuring the energy loss 
of vortex rings (Z,i=0.3 cm, 
Z = 2cm). 
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tures where a is small. In Fig. 8 the field-free region of 
length L is contained between the grids A1 and A2. The 
initial energy Ei of the ring entering this region at A1 
is measured by the magnitude Vi of the potential 
applied between the source S and AX) the final energy 
E2 of the ring leaving the region at A2 is measured by 
the magnitude V2 of the opposing potential which, when 
applied between A 2 and C, is just sufficient to prevent 
charge carriers from reaching the collector C. The 
spacing Li between SA1 and between A 2C is appreciably 
smaller than L. By virtue of (26), the energy E\ is given 
by EL= eVi—a(X)iLi, where <X)i is a suitable average of 
X(E) over the energy range extending from E=0 to 
E=Ei. In Appendix I it is shown that to good approxi
mation (X)i = Xi— 1 where Xx is the value of X(E) for 
E=eVi. Similarly the energy E2 is given by E2=eV2 

+a(X)2Li. Here (x)2 is the same kind of average of x(E) 
over the energy range between 0 and E2, so that 
(X} 2 =X 2 -1 , where X2 is the value of X(E) for E=eV2. 
The energy loss in the drift region between A1 and A 2 

can, by (26), be written as Ei—E2=axL where we have 
used the fact that X (E) is a very slowly varying function 
of E to replace it by its mean value in this region; one 
can put x=§(Xi+X2) to excellent approximation.32 

Eliminating Ei and E2 between these relations one can 
thus calculate a at the particular temperature of the 
experiment from the expression 

e{V1-V2) 

i (* i+X2) ( .L+2Li ) -2Zi 
(27) 

The stopping potential V2 was determined by observ
ing the current / to the collector C as a function of the 
voltage V between A2 and C. The experimentally ob
served current I does not fall abruptly to zero at a 
sharply defined value V=V2, but exhibits a more 
gradual cutoff characteristic. I t was, therefore, neces
sary to use a systematic extrapolation method to 
estimate the potential V2 corresponding to essentially 
complete suppression of the collector current 7.11 This 
procedure proved to be reproducible and consistent. 
I ts consistency could be checked by the following facts: 
(1) The energy dependence of $ determined in this 
way by the present method varied properly as x (£ ) , as 
expected from (26) and from the experimental measure
ments of the constant-velocity method. (2) The values 
of <x(T) measured by the present method were in good 
agreement with those obtained by the constant-velocity 
method as can be seen in Fig. 9. 

FIG. 7. The frictional force J o n a vortex ring as a function 
of its energy E at a given temperature T = 0.615°K. 

32 The fractional error involved in this approximation is at most 
of the order of (Vi— V^/i^xViVz) which is small since x is of 
the order of 10. 
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FIG. 9. Logarithmic plot showing for both positively and 
negatively charged vortex rings the dependence of the attenuation 
coefficient a as a function of T~l. The dashed curve shows the 
behavior of a. expected from roton scattering alone; the dotted 
curve that expected from both roton and He3 impurity scattering; 
the solid curve that expected if phonon scattering of the predicted 
magnitude is also included. 

At high temperatures where a is large, the consider
able energy loss in the main drift space AiA2 was 
partially compensated by applying a potential V across 
this space. [An extra term eV should then be added to 
the numerator of (27).] At the other extreme of low 
temperatures, where a is so small that the energy loss 
in the main drift space is of the order of 0.3 eV or less, 
the method tends to become inaccurate. The main 
reason is that an apparent accumulation of electric 
surface charge on the source electrode can introduce 
uncertainties of this order of magnitude in the measure
ment of the vortex ring energies. In determining V%, a 
systematic attempt was made to correct for such 
"charging effects."11 The values of a thus determined 
for both positive and negative vortex rings are shown 
in Fig. 9 and are in good agreement with each other. 

B. Roton Scattering 

The number of thermally excited rotons increases 
exponentially with increasing temperature, i.e., propor
tionately to exp(—A/kT), where A is essentially the 
energy necessary to create a roton (A/& = 8.65°K).33 

The energy loss of vortex rings by roton scattering 
should, therefore, be predominant at relatively high 
temperatures. The corresponding attenuation factor a 
should accordingly be proportional to the mean number 
of rotons present and to some effective momentum-
transfer cross section (rr0 describing the scattering of a 

roton by a vortex line. (Note that, in describing the 
scattering by a vortex line, the cross section a has the 
dimensions of a length and represents some effective 
width of the line responsible for scattering.) The 
detailed calculation of Appendix II yields the result 

3TT 2 K 

8 ¥ 
(28) 

where cfro is precisely defined by (A18), pQ is the momen
tum of a roton with energy A(p0/h= 1.92X108 cm-1),33 

and K is the circulation of the vortex ring (ic=h/m in 
our case of one quantum). The exponential factor in 
(28) predominates over any possible slow temperature 
dependence of ovo. In the following we shall assume dv0 

to be temperature-independent. The experimental 
points of logo: versus T~l in Fig. 9 indicate that at high 
temperatures a does indeed reflect the exponential 
temperature dependence expected by (28). At the 
highest temperature of the plot (0.67°K) the scattering 
should be due almost entirely to rotons. One can thus 
use the experimental data at this temperature to deduce 
from (28) the magnitude of the cross section for scatter
ing by rotons. Thus one finds 

dv0=9.5±0.7A. (29) 

At lower temperatures the experimental points of 
lna versus T"1 in Fig. 9 deviate increasingly from the 
straight line, presumably because interaction with 
other quasiparticles (phonons and He3 impurities) be
comes predominant. Before discussing these other 
scattering mechanisms, it is worth commenting on the 
value of ovo deduced in (29) from the present experi
ments. A cross section for the scattering of rotons by 
vortex lines can also be inferred from experiments on 
the attenuation of second sound34 and on vortex waves 
in rotating liquid-helium II.35 Hall gives a review of this 
work35 which leads to an estimated cross section of 
about 10 A. This value is in good agreement with the 
one obtained in (29) from the present experiments. 

Several attempts have been made to deduce a value 
for orr0 on the basis of microscopic arguments. Hall and 
Vinen34'35 assumed that the predominant interaction 
between a roton and a vortex line is given by the 
expression p v s by which the energy of a roton of 
momentum p is increased when it finds itself in a super-
fluid which is not at rest, but is moving with a velocity 
vs; here vs is the velocity (4) due to the vortex line. 
They used a Born approximation, which is of question
able validity and which suffers from some convergence 
difficulties, but they obtained order of magnitude 
agreement with the experimentally deduced value of 
ofr0; they also predicted it to be proportional to T~~x. 

33 J. L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C. Kerr, 
Phys. Rev. 113, 1379 (1959). 

34 H. E. Hall and W. F. Vinen, Proc. Roy. Soc. (London) A238, 
204 (1956). 

35 H. E. Hall, Advances in Physics (Francis & Taylor, Ltd., 
London, 1960), Vol. 9, p. 89; see particularly pp. I l l and 126. 
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Lifshitz and Pitaevskii,36 on the other hand, used a 
"quasiclassical" approximation to calculate ov0. They 
found a temperature-independent cross section an 
order of magnitude too small and predicted also an 
appreciable amount of nonisotropic scattering. To 
account for the discrepancy they suggested, in addition 
to the p • vs interaction, the existence of a predominant 
hard-core strong interaction effective only if a roton 
passes very close to the vortex line and leading to a 
temperature-independent cross section. None of these 
calculations can be considered really satisfactory and 
there is nothing in the present experiments which 
would tend to favor one of these calculations over the 
other. 

C. He3 Scattering 

The interaction of vortex rings with He3 atoms is of 
interest both intrinsically and because such scattering, 
due to the small number of He3 impurity atoms present 
in ordinary liquid helium, becomes the predominant 
mechanism responsible for the friction force 9r at 
sufficiently low temperatures. The general expressions 
for the force # due to He3 scattering is again expected 
to be of the form (26) with a corresponding attenuation 
factor OJ3 derived in (A20) of Appendix II and given by 

a^lKilirnfkTY^dz^T). (30) 

Here n% is the number of He3 atoms per unit volume, 
m* is the effective mass of such an atom (where m* may 
be different from the actual mass w3 of a He3 atom), 
and ô o is an effective cross section describing the 
scattering of a He3 atom by a vortex line. 

In order to measure a3 experimentally, a known small 
quantity of He3 was added to the He4 gas which was 
later condensed to form the liquid under investigation. 
The fractional He3 impurity concentration used was 
28.4X10"6. This concentration was subsequently also 
checked by mass-spectrometric analysis and was found 
to agree within 3%. The measurements of the friction 
force were carried out by the stopping-potential method 
at 0.28°K. At this low temperature the energy loss 
caused by rotons or phonons is quite negligible com
pared to that caused by the relatively numerous He3 

impurities so that the measured friction force £ is due 
entirely to these impurities. These measurements 
verified again the weak energy dependence of # given 
by X(E) in (26) and yielded the result a3= (1.46±0.01) 
eV/cm. The relation (30) leads then at 0.28°K to an 
effective cross section 

ff8o=18.3±0.7A, (31) 

if one assumes for the effective mass the value m*= 2.5m3 

36 E. M. Lifshitz and L. P. Pitaevskii, Zh. Eksperim. i Teor. Fiz. 
33, 535 (1959) [English transl.: Soviet Phys.—JETP 6, 418 

deduced from experiments on the propagation of second 
sound in He^He3 mixtures.37 

A further experiment was carried out to verify that 
the observed scattering was indeed due to He3 atoms 
and that a3 was properly proportional to the He3 con
centration n% as expected by (30). The previous sample 
was therefore diluted with ordinary helium (well 
helium with an estimated natural isotropic He3 con
centration of 1.4X10-7) to give a new sample with a 
He3 concentration of 7.55X10~6, i.e., smaller than the 
concentration of the previous sample by a factor of 0.27. 
The value of a3 measured in this sample at 0.28°K was 
az= (0.42±0.02) eV/cm, smaller than the value of QJ3 

in the previous sample by a factor of 0.28. This verifies 
the proportionality a3 °c %% within the limits of estimated 
error and supports the consistent interpretation of 
these experiments in terms of He3 scattering with a 
cross section given by (31). 

This diluted sample was also used to verify the 
additivity of He3 and roton scattering by performing 
an experiment at the relatively high temperature of 
0.61 °K. The directly measured value of a was then 
a =1.42 eV/cm. Roton scattering alone at this tem
perature should, by Fig. 9, contribute a value cer=0.87 
eV/cm while (30) predicts for scattering by He3 atoms 
(assuming &Zo to be temperature-independent) a value 
0:3=0.62 eV/cm. The sum 0^+0:3= 1.49 is thus in 
reasonably good agreement with the directly measured 
value of a. 

The value of d̂ o in (31) cannot be compared with 
data obtained from other experiments since we know 
of none which have attempted to measure the scattering 
between vortex lines and He3 atoms. Such experiments 
on second sound propagation or vortex waves in rotating 
liquid helium containing He3 impurities would, of 
course, be possible. 

D. Comments on Photon Scattering 

The approximate isotopic abundance of He3 atoms 
in ordinary helium (obtained from wells) corresponds 
to a He3 atom concentration38 of 1.4X10-7 and is 
sufficient to lead at 0.28°K to a calculated value 
a3=7.2XlO~3 eV/cm in our "pure" helium. This value 
of a is far greater than that due to rotons at this low 
temperature and is consistent with the estimated 
magnitude of the rate of energy loss observed for vortex 
rings at 0.28°K. The relation (30) shows that a^T1^ 
if 3̂0 is assumed to be temperature-independent. The 
dotted curve in Fig. 9 illustrates then the predicted 
temperature dependence of the total attenuation 
coefficient (ar+az) if both roton and He3 impurity 
scattering are taken into account. 

37 H. C. Kramers, in Liquid Helium, edited by G. Careri 
(Academic Press Inc., New York, 1963), International School of 
Physics, Enrico Fermi, course 21, p. 395. See also K. R. Atkins, 
Liquid Helium (Cambridge University Press, New York, 1959), 
p. 289. 

38 K. R. Atkins, Ref. 30, p. 230. 
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Finally, we turn to a discussion of the expected 
interaction of vortex rings with phonons. The analysis 
of Appendix II yields for the attenuation coefficient 
due to phonons the result 

ap= ( J a p Q . (32) 
20 hA c J 

Pitaievskii39 has attempted to calculate the momentum-
transfer cross section of a phonon of momentum p by a 
vortex line and finds o>0= (ir/2)(K2p/c2h). Equation 
(A18) of Appendix II gives then at 0.28°K an effective 
phonon cross section ^ 0 = 0 . 3 A ; correspondingly 
af3,= 2.2Xl0~3 eV/cm, a value about 30% of the 
attenuation coefficient az due to He3 impurities. 
Because of its rapid temperature dependence ap should, 
however, become more important than a3 at higher 
temperatures and should be noticeable until, at tem
peratures appreciably above 0.5°K, it becomes in
significant compared to the coefficient ar due to roton 
scattering. I t was pointed out previously that measure
ments of the attenuation coefficient a become increas
ingly inaccurate at low temperatures where a is small. 
Nevertheless, the experimental points in Fig. 9 are seen 
to be not inconsistent with the theoretical solid curve 
obtained by adding to the attenuation coefficient 
(ar+ce3) due to rotons and He3 impurities the phonon 
contribution ap calculated by (31) on the basis of 
Pitaevskii's theory of the phonon-scattering cross 
section. 

5. CONCLUDING REMARKS 

The previous pages have presented evidence showing 
that it is possible to create charged vortex rings in 
liquid helium. Since these are created in the middle of 
the liquid, far from the disturbing effects of any walls, 
and since their charge allows them to be manipulated 
by external electromagnetic fields, the properties of 
these vortex rings can then be studied in considerable 
detail. In particular, we have discussed experiments 
showing that their circulation is equal to one quantum 
h/m; we have investigated their dynamical properties 
and found them to be consistent with those expected 
from hydrodynamical considerations; and we have 
studied their scattering by rotons and He3 impurities 
and thus determined the scattering cross sections 
describing the interaction of these quasiparticles with 
vortex lines. 

We are interested in pursuing a number of other 
experiments. For example, it would be desirable to 
determine the magnitude of the binding energy coupling 
the charge to the vortex ring. (A measurement of this 
kind might also have a bearing on other experiments 

39 L. Pitaevsldi, Zh. Eksperim. i Toer. Fiz. 35, 1271 (1957) 
[English transl.: Soviet Phys.—JETP 8, 888 (1959)], particularly 
Eq. (29). See also A. L. Fetter (to be published). 

suggesting a trapping of ions by vortex lines.40) I t 
would also be interesting to devise an experimental 
arrangement which would favor the creation of vortex 
rings with more than one quantum of circulation. 
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APPENDIX I: ENERGY GAIN IN THE 
STOPPING-POTENTIAL METHOD 

We do not see what connection, if any, there might 
exist between our present experiments and the discrete 
discontinuities in ionic mobilities observed by Careri 
et al.41 in superfluid helium at much higher temperatures. 
The latter authors suggested at one time that their 
results might be interpreted in terms of the creation of 
quantized vortex rings, although they pointed out that 
the estimated orders of magnitude involved in this 
explanation were rather inconsistent.41 Later they 
suggested a more complicated hydrodynamical explana
tion.42 I t should also be pointed out that discrete 
discontinuities in ionic mobilities have recently been 
observed in ordinary liquids like argon and nitrogen.43 

On the other hand, it seems likely that the very small 
deflection of ions observed by Careri et al.u in a mag
netic field in superfluid helium at 0.2°K was due to the 
fact that these workers were not observing ordinary 
ions, but the charged vortex rings created by them. 
The velocities of vortex rings tend to be so small that 
the Lorentz force exerted on them by a magnetic field 
is ordinarily quite negligible. Recent experiments by 
Meyer45 at 0.4°K have verified explicitly tha t the 
magnetic deflection of charge carriers is negligible when 
the latter have been given enough energy to exhibit 
vortex ring behavior. 

Consider the space between S and Ai in Fig. 8. An 
applied potential Vi between these electrodes produces 
a field <§i= Vi/Li. The energy E of a vortex ring starting 
out near 5 is essentially zero. Taking into account the 
frictional force (26), one can then write 

dE/dz^e&x-axiE) (Al) 

40 G. Careri, W. D. McCormick, and F. Scaramuzzi, Phys. 
Letters 1, 61, (1962); also Proceedings of the 8th International 
Conference on Low Temperature Physics (Butterworths Scientific 
Publications, Ltd., London, 1963), p. 88. 

41 G. Careri, S. Cunsolo, and P. Mazzoldi, Phys. Rev. Letters 
7, 151 (1961). 

42 G. Careri, S. Cunsolo, and P. Mazzoldi, Proceedings of the 
8th International Conference on Low Temperature Physics (Butter-
worths Scientific Publications, Ltd., London, 1963), p. 90. 

43 B. L. Henson, Phys. Rev. 135, A1002 (1964). 
44 G. Careri, F. Dupre, and I. Modena, Nuovo Cimento 22, 318 

(1961). 
45 L. Meyer (private communication). We wish to thank 

Professor Meyer for permission to mention his unpublished 
results. 
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or 
/ axV"1 / « X \ 

eSidz=dE[ 1 J «dE( H ) , 
\ eSj \ eSj 

where we have assumed that the frictional force is 
relatively small so that ax<^e&i. After integration this 
becomes, putting §iL±= Vi, 

aLi fEi 
eV1=E1+ / X(E)dE. (A2) 

eVi Jo 

But (9) shows that x=v~~l n a s to good approximation 
the functional form x = c + h x E , where c is some constant. 
Integration of this expression gives the result46 

/ x(E)dE^^(E1)-l^E1^(X1-l)E1, (A3) 
Jo 

where we have used the approximation of putting 
x(Ei) = x(eVi)=X1 in the last step since x is a slowly 
varying function of E. Substituting (A3) into (A2) and 
solving for E\ gives then the result used in the text 

Ei=eVi-a(X1~l)L1. (A4) 

APPENDIX II: CALCULATION OF SCATTERING 
BETWEEN VORTEX RINGS AND 

QUASIPARTICLES 

A. General Formulation of the Problem 

We should like to calculate the magnitude SF of the 
frictional force on a vortex ring of radius R moving 
through liquid helium with a velocity v in the z direc
tion. The discussion leading to Eq. (26) showed that, 
since the radius R is relatively large and the superfluid 
velocity at each ring element is v, the ring can be 
imagined straightened out so that the problem is 
reduced to the two-dimensional one of calculating the 
frictional force # ' per unit length on a long straight 
vortex line (and associated superfluid) moving with a 
velocity v with respect to the quasiparticles of the fluid. 
Equivalently one can calculate this force 3^ by con
sidering the vortex line stationary in the superfluid 
while the gas of quasiparticles moves with respect to 
this line with a mean velocity v in the — z direction. 
We shall adopt this last point of view in the following 
paragraphs and consider the geometrical situation 
illustrated in Fig. 10 where the x axis points along the 
vortex line. With the assumptions discussed in connec
tion with Eq. (26), the total force on the vortex ring 
can then be computed by imagining the vortex line to 
be bent into a circle of radius R with its axis pointing 
in the z direction. Any components of &' in the x or y 
directions of Fig. 10 cannot contribute to the net force 
on the ring since they must cancel by symmetry; only 

46 Actual numerical integration yields 0.9 instead of 1 in (A3); 
this difference is negligible. 

the component in the — z direction contributes. Thus 
one can write 

3r= (2TTR)ff' = 2TCRO($'/V) . (AS) 

The last form reflects the expectation that 9^ is propor
tional to v so that &'/v is independent of v. Using the 
expression (6) for v, (AS) can then be written in the 
form (26) with 

a = iic($'/v). (A6) 

The force $f is equal to the mean component of 
momentum in the — z direction transferred to unit 
length of the line per unit time by virtue of collisions 
with the quasiparticles of the fluid. Denote the momen
tum of a quasiparticle p and its energy (with respect 
to the superfluid at rest) by e(p), where p = | p | . We 
assume that the collision of a quasiparticle with a vortex 
line is elastic so that its energy is unchanged; then 
p' = p, where the prime denotes quantities after a 
collision.47 We assume further that the momentum 
component parallel to the vortex line is unchanged as 
a result of collisions; thus px

/ = px, i.e., the angle 6 
specifying the direction of p with respect to the x axis, 
is unchanged. Denote the azimuthal angle of p about 
this axis by <£ before, and by (<£+ cp) after the collision. 
The line acquires in this kind of collision a component 
of momentum in the — z direction equal to pj—pz 

= ^sin#[cos (<£+<£>) — cos<3>]. The probability of occur
rence of scattering by an angle between <p and <p-\-d<p is 
specified by the scattering cross section <r(p; <p)d<p 
which gives the number of particles scattered into this 
angular range (per unit length in the x direction) per 
unit incident flux of quasiparticles incident on the line. 
This flux is given by /(p)d3p(wsin0), where /(p)d3p 
denotes the mean number of quasiparticles per unit 
volume with momentum between p and p + J p and 
where u=\de/dp\ denotes the magnitude of the group 
velocity of such an excitation. The total force 9r/ in the 
—2 direction per unit length of line is then equal to 

£'= J [J3p/(p> sinfl] 

X / p sin0[cos (<i>+ <p) — cos$>d<p, (A7) 

where the second integral is over all possible scattering 
angles <p and the first one over all possible momenta p 
of the incident quasiparticles. 

The mean number /(p)^3p of quasiparticles per unit 
volume in a thermal equilibrium situation where their 
mean velocity is v can readily be expressed in terms of 
the corresponding mean number fo(e)dsp in thermal 
equilibrium when their mean velocity vanishes (so that 
/o depends only on | p | ) . Thus one has quite generally 

/ (p) = / o ( € - v . p ) « / o ( 6 ) - ( a / 0 / d e ) v p , (A8) 

47 In the case of rotons p'**p=po to good approximation, 
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FIG. 10. Side and top views illustrating the scattering 
of a quasiparticle of momentum p by a vortex line. 

where the last step uses the approximation that v is 
small. In our case v= — vz so that v- p= — vp sin0 cos$. 
Writing dz$=p2dp smdddd<& and using (A8), integration 
of (A7) over all incident angles 0<<3><27r and O<0<7r 
gives then the result 

IF 
5 d/o 
dp up4a0(p), 

de 

(A9) 

where 

3r= f 
'= v 

8 Jo 

<ro(p)= / (l-cos^)or(^; <p)d<p (A10) 
Jo 

is a total momentum-transfer cross section. Introducing 
the following average of this cross section over all 
momenta 

s / dp—up^s(P) 
Jo de 

/ / &p—up 
de 

the result (A6) can then be written 

3TT2 

= h 

16 

.2 /»oo / 

-K&o I dpi -
) Jo \ 

(All) 

(A12) 

B. Roton Scattering 

Bose-Einstein statistics are applicable in the case of 
phonons and rotons so that 

/o(e) = *"*(«*-1)"1, (A13) 

where £s= (kT)"1. For rotons the dispersion relation 
assumes the form 

e=A+(p-po)2/2}x. (A14) 

Hence u= \ de/dp\ = \p—po\/v- Since /5e^>l, /0 is only 
appreciable when p is close to p0. Hence one can write 
p==p0-{-£, use the fact that | £ [<3Ĉ o wherever the factor 

(dfo/de) in (A12) is appreciable, and extend the range 
of integration over f from — oo to + °° with negligible 
error. Using the subscript r for rotons, (A12) then 
becomes 

3TT2 K 

ar= poAe-PAaro. (A1S) 
8 A8 

Here the effective cross section is given by (All), the 
integrals being conveniently expressed in terms of the 
dimensionless variable q?== (p~p0)/(2fxkT)112 

- / 
aro= / dq<r*\q\<rro(po+(2»kT)ll*q). (A16) 

C. Phonon Scattering 

The distribution (A13) is still applicable, but the 
dispersion relation is simply e=cp where c is the velocity 
of sound. Thus u=de/dp=c. Hence (A12) becomes, 
using the subscript p for phonons, 

7T6 K /kT\A 

20 hA c J 
(A17) 

Putting q=p{kT/c)~l, the effective cross section (All) 
is here given by 

<TpOz 

15 

4TT4 f 
Jo 

dqeq(e9 
/kT 

) • 

(A18) 

D. He3 Scattering 

The dispersion relation for a He3 atom is simply 
e=pP/(2tn*), where m* is its effective mass. Hence 
u=p/m*. The He3 impurity atoms obey Maxwell-
Boltzmann statistics since their number n% per unit 
volume is quite small. Hence 

fodzV=nz (2irmfkT)-z'2e-^dzp (A19) 

which is properly normalized so that integration over 
all momenta yields nz. Using the subscript 3 for He3 

atoms, the attenuation coefficient (A12) for scattering 
due to He3 atoms becomes then 

o:3-t /c(27rw^r)1%30 :30. (A20) 

The effective cross section (All) can here be written, 
putting q^p(2m*kT)~^2, 

•f 
Jo 

cf3o= / dqir+fffnWm'kWq). (A21) 


